**Integrating Protein Prospector into the Trans-Proteomic Pipeline**

**Peter R. Baker**, Giselle M. Knudsen, Alex S. Yamana, Luis Mendoza, Robert L. Moritz and Robert J. Chalkley

1. Mass Spectrometry Facility, Dept. of Pharmaceutical Chemistry, University of California, San Francisco, USA
2. Institute for Systems Biology, Seattle, WA

### Introduction

**Protein Prospector** is a set of tools for the analysis of LC/MS/MS proteomics data (identification and quantification).

- Batch-Tag search engine pioneered many advanced options:
  - Cross-linked peptide data analysis
  - Glycopeptide data analysis
  - Mass modification searching
- ETD/EThCox data analysis.

The Trans-Proteomic Pipeline (TPP) has some overlapping, but also several unique functionalities:

- Peptide and Protein Prophet: Statistical validation of search results
- Prophet: Merging results from multiple search engines
- Also includes tools for quantification analysis
- Recent support for cross-linking analysis

ProHits is software for analysis of Affinity Purification mass spectrometry data. It uses TPP output files as input.

This poster described the integration of Protein Prospector with TPP and subsequent analyzing of Protein Prospector results using ProHits.

### Methods

- **Protein Prospector** uses two modules for batch processing of LC/MS/MS data:
  - Batch-Tag scores the best results for each spectrum.
  - Search Compare combines Batch-Tag results into proteins and filters results by FDR.
- Both programs can be run from the command line.
- Search Compare has an option to output pepXML, which is compatible with the TPP.
- **Protein Prospector** was modified to allow direct searching of pepXML, which is compatible with the TPP. The TPP was modified to add a Protein Prospector option which uses the Protein Prospector expectation values as the discriminant for calculating reliability using Peptide Prophet and Protein Prophet.
- The peak lists for the various data sets are uploaded to their respective directories using the TPP File Browser. A form was created for selecting the Batch-Tag, Search Compare and ProHits parameters (Fig. 1) to be used.
- The ProXML files can be downloaded for further processing in ProHits.

### Conclusions

- Approximately 125 unique affinity experiments with two to five replicate IP-MS samples of each were processed through the Protein Prospector => TPP => ProHits workflow.
- By comparing such a large number of baits one is able to determine proteins that bind nonspecifically in the IP process (e.g., to the magnetic beads).
- Several exciting targets were identified that will be followed up on to determine their significance in neuroimmune disorders.

### References

1. Deutsch EW, Mendoza L, Shreyenberg D, Slagel J, Sun Z, Moritz RL. (2015) Trans-Proteomic Pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics. Proteomics Clin Appl. 9(7-8), 745-54

### Acknowledgements

This work was supported by grant number 8P41GM103481, The Sandler Family Foundation, The William K. Bowes Foundation, The Well Foundation, and The Ør Miriam and Sheldon G. Adelson Medical Research Foundation.

---

**Workflow for IP-MS Analysis**

**Example IPMS Project**

**Motivation:**
To identify the targets of autoantibodies in patient CSF samples.

Patient antibodies are captured with protein A + protein G magnetic beads and incubated with protein lysates prepared from mouse tissues as a source of prey proteins.

Data are searched as appropriate with the SwissProt human + mouse database.

Assumption: If antibody binds a particular mouse protein its normal target is probably the human homolog.

**ProHits** is used to define control and affinity experiments for comparisons and scoring with SAINT. ProHits-viz is then used to visualize SAINT score data.

**Experimental Setup**
1. **Patient ID**
2. **Probing antibody – antigen pairs in auto-immune disease.**
3. **ProHits Animat**

**ProHits Analytics**

- Data are searched as appropriate with the SwissProt human + mouse database.
- The prediction score filter is set to a score of 0.9. Alternative views include heat maps for patient vs. disease and prey vs. prey visualization.

**Comparative Analysis with ProHits**

ProteinProphet files in pep.xml and prot.xml format are uploaded as search results into ProHits/Viz software for scoring with SAINT and comparative analysis. The ProHits analyzer module was used for results comparisons to visualize data sets.